Pale-Green Phenotype of atl31 atl6 Double Mutant Leaves Is Caused by Disruption of 5-Aminolevulinic Acid Biosynthesis in Arabidopsis thaliana
نویسندگان
چکیده
Arabidopsis ubiquitin ligases ATL31 and homologue ATL6 control the carbon/nitrogen nutrient and pathogen responses. A mutant with the loss-of-function of both atl31 and atl6 developed light intensity-dependent pale-green true leaves, whereas the single knockout mutants did not. Plastid ultrastructure and Blue Native-PAGE analyses revealed that pale-green leaves contain abnormal plastid structure with highly reduced levels of thylakoid proteins. In contrast, the pale-green leaves of the atl31/atl6 mutant showed normal Fv/Fm. In the pale-green leaves of the atl31/atl6, the expression of HEMA1, which encodes the key enzyme for 5-aminolevulinic acid synthesis, the rate-limiting step in chlorophyll biosynthesis, was markedly down-regulated. The expression of key transcription factor GLK1, which directly promotes HEMA1 transcription, was also significantly decreased in atl31/atl6 mutant. Finally, application of 5-aminolevulinic acid to the atl31/atl6 mutants resulted in recovery to a green phenotype. Taken together, these findings indicate that the 5-aminolevulinic acid biosynthesis step was inhibited through the down-regulation of chlorophyll biosynthesis-related genes in the pale-green leaves of atl31/atl6 mutant.
منابع مشابه
The Carbon/Nitrogen Regulator ARABIDOPSIS TOXICOS EN LEVADURA31 Controls Papilla Formation in Response to Powdery Mildew Fungi Penetration by Interacting with SYNTAXIN OF PLANTS121 in Arabidopsis1[W][OPEN]
The carbon/nitrogen (C/N) balance of plants is not only required for growth and development but also plays an important role in basal immunity. However, the mechanisms that link C/N regulation and basal immunity are poorly understood. We previously demonstrated that the Arabidopsis (Arabidopsis thaliana) Arabidopsis Tóxicos en Levadura31 (ATL31) ubiquitin ligase, a regulator of the C/N response...
متن کاملNegative control of Strictisidine synthase like-7 gene on salt stress resistance in Arabidopsis thaliana
Strictosidine synthase-like (SSL) is a group of gene families in the Arabidopsis genome, which whose orthologues in other plants are key enzymes in mono-terpenoid indole-alkaloid biosynthesis pathway. The SSL7 is upregulated upon treatments of Arabidopsis plants with signaling molecules such as SA, methyl jasmonate and ethylene. To find the functional role of the gene, a T-DNA-mediated knockout...
متن کاملPhytochrome B Mediates the Regulation of Chlorophyll Biosynthesis through Transcriptional Regulation of ChlH and GUN4 in Rice Seedlings
Accurate regulation of chlorophyll synthesis is crucial for chloroplast formation during the greening process in angiosperms. In this study, we examined the role of phytochrome B (phyB) in the regulation of chlorophyll synthesis in rice seedlings (Oryza sativa L.) through the characterization of a pale-green phenotype observed in the phyB mutant grown under continuous red light (Rc) irradiation...
متن کاملThe tetratricopeptide repeat-containing protein slow green1 is required for chloroplast development in Arabidopsis
A new gene, SG1, was identified in a slow-greening mutant (sg1) isolated from an ethylmethanesulphonate-mutagenized population of Arabidopsis thaliana. The newly formed leaves of sg1 were initially albino, but gradually became pale green. After 3 weeks, the leaves of the mutant were as green as those of the wild-type plants. Transmission electron microscopic observations revealed that the mutan...
متن کاملArabidopsis CHLI2 can substitute for CHLI1.
The I subunit of magnesium-chelatase (CHLI) is encoded by two genes in Arabidopsis (Arabidopsis thaliana), CHLI1 and CHLI2. Conflicting results have been reported concerning the functions of the two proteins. We show here that the chli1/chli1 chli2/chli2 double knockout mutant was albino. Comparison with the pale-green phenotype of a chli1/chli1 single knockout mutant indicates that CHLI2 could...
متن کامل